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We consider quasi-free quantum systems and we derive the Euler equation using
the so-called hydrodynamic limit. We use Wigner's well-known distribution
function and discuss an extension to band distribution functions for particles in
a periodic potential. We investigate the bosonic system of hard rods and
calculate fluctuations of the density.

KEY WORDS: Euler equation; quantum distribution function; hydro-
dynamic limit.

1. INTRODUCTION

The Euler equations appear in hydrodynamics as scaling limits for the
dynamics of the conserved quantities in a fluid. So far the only rigorous
example of a microscopic derivation starting from Newton's laws is that of
the one-dimensional hard rod fluid.(1�4) In this degenerate situation the
number of particles with a given momentum is locally conserved. Therfore
the hydrodynamic field nv(x, t) is just counting the number of particles at
time t with space coordinate x and with momenta equal to v (we have put
the masses equal to one). When the rod length tends to zero we deal with
a one-dimensional ideal gas and, after the appropriate (Eulerian) scaling,
the associated density field converges to the solution of

�t f (x, v; t)+v �x f (x, v; t)=0 (1.1)
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(for certain initial conditions). One can then go further and study the fluc-
tuations around this macroscopic equation. They are Gaussian with a
covariance matrix containing information about the transport coefficients
which are finite and non-zero for the hard rod fluid.

In the present paper we investigate what remains of this in the quan-
tum case. Then also here we pick out the simplest possible quantum
dynamics and we simply ask how the corresponding Euler equations and
the fluctuations around it can be derived. We see this as a modest step in
the rigorous study of what could be called quantum hydrodynamics.
Clealy, a mathematical derivation ab initio of the macroscopic equations of
so-called quantum liquids is beyond reach. We may however learn some-
thing about the conceptual set-up to start such a project from a rigorous
study in the most simple cases. We refer to refs. 3 and 5 for an overview
and some solutions to some of the questions in the quantum domain of
hydrodynamics. In all cases the underlying philosophy is however not
fundamentally different from the classical situation. Conserved quantities
vary on a much larger time scale than the others and by a law of large
numbers the macroscopic equations appear as closed equations governing
the motion of the rescaled conserved quantities.

Here we study quasi-free systems. That means that the microscopic
dynamics is in some sense linear (as for classical Gaussian systems) and the
equations are determined by the one-particle motion. Therefore we do not
have to deal with the most important problem of time-scale separation (the
Boltzmann�Gibbs principle) to see how the rescaling effectively truncates
the hierarchy of kinetic equations. In this situation two papers by Herbert
Spohn(5, 6) show how to get the program started. In the next section we
summarize some of the ideas. In Sections 3 and 4 we discuss the derivation
of the Euler equation (similar to (1.1)) for free systems subject to a slowly
varying external potential. It is interesting to see that this can be applied
(in Section 5) in the case of hard core bosons on the one-dimensional lat-
tice. Section 6 deals with the non-equilibrium fluctuations. We compute the
covariance of the rescaled density field. As expected, only at that moment
do we start seeing a difference between the quantum statistics. Finally, in
Section 7, we turn to the case of non-interacting quantum particles in a
periodic potential.

2. SOME PRELIMINARIES

The first step in doing anything related to quantum hydrodynamics is
probably asking for what quantum systems we can get a good idea of what
are the conserved quantities and what is the structure of the equilibrium
states. The answer is disappointing: Compared to the situation in so-called
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classical statistical mechanics, there is very little we know about truly inter-
acting quantum systems. It is therefore not unreasonable to turn first to
quasi-free systems where already on the microscopic scale the dynamics is
governed by a one-particle Hamiltonian. A quasi-free dynamics is a quan-
tum dynamics generated by a Hamiltonian H which is quadratic in the
creation and annihilation operators a*(x), a(x) of a Bose or Fermi field.
Formally,

H=| dx dy h= (x, y) a*(x) a( y) (2.1)

As usual with a varying number of particles, this should be thought of
as acting on Fock space with single particle space L2(Rd, dx). The qua-
dratic form is specified by a one-particle Hamiltonian h= which in the
physically more interesting situations has the form

h==
1
2 [ p� +eA9 (=x)]2+U(x)+V(=x) (2.2)

where U is a periodic potential, V is an external potential and A9 is the vector
potential. The parameter =>0 specifies the scale over which the external
potentials are varying and will be our scaling parameter in what follows. In
the next section we start with the case where U=0 but allowing a bit more
general form of h=(x, y) than obtained from (2.2). It is not too difficult to
see that, when dealing with a quantum dynamics generated by (2.1), the
evolution of the correlation functions can be specified in terms of the single
particle evolution generated by h= . Therefore, the kinetic equations are
closed even on the microscopic level which is an enormous advantage for
doing hydrodynamics.

Notice however that the form (2.1) need not be restricted to the
microscopic domain (where (2.1) is rather simplistic); there are plenty of
quasi-free models in mesoscopic physics where (2.1) appears as effective
action or as describing the evolution of quasi-particles. E.g., the central
question in Bogoliubov's work on superfluidity was to see how to arrive at
something like (2.1) (with some very particular properties) starting from a
realistic interaction between He4-particles.(7, 8) This is just a question of
equilibrium statistical mechanics. Once arrived at (2.1) with an energy
spectrum E(k)t |k | for small |k |, Landau's theory (as, e.g., in ref. 9) takes
over and completes the dynamical picture of superfluidity.

A quasi-free state is a state on the CAR or CCR algebra (the algebra's
generated by the identity and the a*(x), a(x) satisfying the Canonical
(Anti)Commutation Relations) for which all correlations functions (and
hence the state itself ) are determined by the two-point functions, see e.g.,
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ref. 10. For gauge invariant quasi-free states | we must only specify the
|(a*(x) a( y)), which, in turn, are given in terms of a self-adjoint operator
on the one-particle space.

Because of the dependence on the one-particle evolution in our systems
(as explained above) it is crucial to understand the scaling of the long time
behavior of a quantum particle subject to (2.2). To keep it simple, let us for
a moment put A=0 in (2.2). Consider the position operator r(t) in the
Heisenberg picture and define its rescaling as

r=(t)==r(=&1t) (2.3)

Rescaling the momentum operator as p=(t)= p(=&1t) we see that the com-
mutator [r=, p=] vanishes as = goes to zero. Let us therefore consider the
semiclassical equations of motion, cf. refs. 11�13 and 6. Writing En(k)
(n=1, 2,... and k # the Brillouin zone), for the (Bloch-)eigenvalues of the
periodic part ho= 1

2 p2+U(x) (with periodic boundary conditions), for
each band the semiclassical equations (�=1) look as follows:

�t r=�kEn(k) (2.4)

�t k=&�rV(r) (2.5)

If at time t=0 the particle has a probability distribution fn(r, k), then, via
(2.4)�(2.5), the distribution at time t�0 is given by fn(r, k; t)= fn(r(&t),
k(&t)) and solves

�t fn(r, k; t)+�kEn(k) �r fn(r, k; t)=�r V(r) �k fn(r, k; t) (2.6)

We can therefore expect that (2.6) gives the correct Euler equation for the
considered quasi-free system but we still need to understand what to use
for distribution function fn(r, k; t).

The next question is thus to see what is the analogue of classical quan-
tities like nv(x, t) or f (x, v; t) appearing in (1.1). Let us therefore briefly
recall the notion of Wigner distribution function (cf. ref. 14). A recent and
to this work very relevant mathematical survey is contained in Section 1 of
ref. 11.4 If �(r) is the wave function of a quantum system, then we call
(h=1):

F (r, k)=\1
?+

d

|
R d

d' e2ik } ' �� (r+') �(r&') (2.7)
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the distribution function of the simultaneous values of the coordinates r
and momenta k. Even though F is not positive in general (but it is real
valued), this is traditionally justified by the following properties:

|�(r)|2=| dk F(r, k) (2.8)

|�� (k)|2=| dr F(r, k) (2.9)

By t we denote Fourier transformation.
We wish to do exactly the same thing for our quasi-free systems. We

will come back to the case of a periodic potential in Section 7 but for the
moment we now also put U=0. Now we have, for every =>0 small, a state
|= and we must rescale space and time by =&1. Let :t denote the
microscopic time evolution to be generated by a quasi-free Hamiltonian
and write the time-evolved state as |= b := &1 t=|=

= &1 t . Then we define (cf.
ref. 5),

f =(r, k; t)=\1
?+

d

\:
' + | d' e2i' } k |=

= &1 t[a*(=&1r+') a(=&1r&')] (2.10)

as the macroscopic (scale =&1) one-particle distribution function of the
system. Clearly, clustering conditions on the state |= will be required to
allow the convergence of the integral (sum) over '. From now on the
assumption stands that this clustering holds allowing a well defined (2.10).
Even though we write an integral in (2.10) we prefer to avoid here techni-
calities related to working in the continuum. We therefore mostly think of
lattice systems (in which case we really have a discrete sum, =&1r should be
replaced by its integral part and the wave vector k is in the first Brillouin
zone). Expressions like a*(x) a( y) should be understood in the distributional
sense. Also later we will use the integral sign as a common symbol even when
considering discrete systems. The analogous properties to (2.8)�(2.9) apply.
As an example, note that if we are interested say in the density and if initially
(at t=0) we have a product state with |=[a*(=&1r+') a(=&1r&')]=
$(') \(r), then f =(r, k; 0)=(1�2?) \(r) is the initial particle density.

The main question is now to investigate the limiting behavior (as =
goes to zero) of (2.10). That is, to derive what corresponds to the Euler
equation (1.1). Aferwards we look for the fluctuations around this limiting
behavior.

It should be clear by now that we do not identify the problem of deriv-
ing ``quantum'' Euler equations or of studying quantum hydrodynamics
with that of ``quantizing'' the classical hydrodynamic equations. The
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macroscopic equations remain just ``ordinary'' partial differential equations
for conserved quantities (and not for operators). Still, the quantum nature
of the underlying system may in principle have a non-trivial effect on these
equations (as for quantum liquids, superfluidity, etc.); if not on the macro-
scopic equations themselves then on the fluctuations (with corresponding
transport properties) around it.

Scaling limits for Wigner functions (measures) are studied in the mathe-
matics literature (see for instance the recent work by Gerard et al.(11) The
starting point there is the Schro� dinger equation

�t �=(=&1x, =&1t)+ih=�=(=&1x, =&1t)=0 (2.11)

with �=(x, t=0)=�=(x).5 h= is the same type of Hamiltonian operator as
in our quasi-free systems. In fact, we shall use their result to show the exist-
ence of f (r, k; t), the limit of (2.10) as = goes to zero. Moreover, to a large
extent hydrodynamics of quasi-free quantum systems reduces to the
homogenization limits considered in ref. 11.

For an introduction to semi-classical analysis we mention ref. (15).

3. EULER EQUATION FOR QUASI-FREE SYSTEMS

We consider a system of bosons or of fermions with formal
Hamiltonian

H=| dx dy h=(x, y) a*(x) a( y)

As usual, the field of creation and annihilation operators is denoted by
a*(x), a(x). The kernel h=(x, y) corresponds to a one-particle Hamiltonian.
We always assume here that h=(x, y)=h(=(x+y)�2, y&x) with an appro-
priate decay condition, e.g., supx � dy |h=(x, y)|<� for fermions, to generate
an infinite volume quasi-free time evolution further denoted by :t . Or put
differently, the matrix elements h=(x&y�2, x+y�2)=h(=x, y) may be
thought of as hopping rates (from place x&y�2 to x+y�2 by a distance y)
varying slowly with x. The time t is real. Equivalently, we may write the
Hamiltonian H via the Fourier transform a~ ( p)=(1�2?)d�2 � du eipua(u),

H=\ 1
2? +

d

| dk | dp | du ei(k& p) uE(=u, (k+ p)�2) a~ *(k) a~ ( p)
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where the energy spectrum, E, is defined by: E(r, k)=� dv e&ikvh(r, v).
Clearly, in the limit of infinite scale separation, = to zero, the microscopic
time evolution is translation invariant with (true) energy spectrum E(k)=
E(0, k). Yet, as we will see shortly, the (macroscopic) Euler equation
remembers the dependence of E(r, k) on r. Finally, the simplest example
corresponds to a free system in a slowly varying chemical potential,
E(r, k)=E(k)+V(r), which corresponds to

H=| dk E(k) a~ *(k) a~ (k)+| du V(=u) a*(u) a(u)

In order to find conditions under which the existence of the limiting f
(see (2.10)) is guaranteed we recall the work by Gerard et al.(11) Suppose
the 2-point (which is the only relevant information on the state) function
of |= is of the (general) form

|=[a*(x) a( y)]=| d+(*) �� =
*(x) �=

*( y) (3.1)

where �=
* satisfies the Schro� dinger equation (2.11). d+(*) is an absolutely

integrable signed measure. On h= and �=
* we assume the same conditions as

in ref. 11. This decomposition includes the closed convex hull of pure states
(indexed by *). Note, that

f =(r, k; t)=| d+(*) w=[�=
*](x, k; t) (3.2)

where w=[�=
*](x, k; t) is the Wigner function used in ref. 11. This relation

provides an alternative way to derive the Euler equation by quoting their
result on w=[�=

*](x, k; t).
We write f (r, k; t) for any limit f (r, k; t)=lim= a 0 f =(r, k; t), �s f (r, k; t)

=lim= a 0 �s f =(r, k; t), s=t, r, k and we wish to see what equation is satisfied
by such a limiting function.

Proposition 1. Under the above hypotheses.

�t f (r, k; t)+�kE(r, k) �r f (r, k; t)=�r E(r, k) �k f (r, k; t) (3.3)

Proof. There are different ways to verify (3.3). Below we present an
explicit and detailed computation.
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�t f =(r, k; t)

=\ 1
2? +

d

| d' ei'k �t _| =
=&1 t _a* \=&1r+

'
2+ a \=&1r&

'
2+&&

=
&i
= \ 1

2?+
3d

| d' ei'k | dp dp$ eip=&1r&ip$=&1r+i(n�2)( p+p$) | dx dy dz

_e&ipx+ip$y[h=(x, z) |=
=&1 t [a*(z) a( y)]&h=( y, z) | =

=&1 t [a*(x) a(z)]]

=
&i
= \ 1

2?+
3d

| d' dp dp$ ei'(k+( p+p$)�2)+i( p&p$) =&1r

__| dy dn dm eip$y&ipm&ipn |=
=&1 t [a*(m) a( y)] h=(n+m, m)

&| dx dn dm e&ipx+ip$m+ip$n |=
=&1 t [a*(x) a(m)] h=(n+m, m)&

=2d i
= \

1
2? +

3d

| d' du dv ei'(k+u)+2iv=&1r

__| dy dn dm ei(u&v) y&i(u+v)(n+m)|=
=&1 t [a*(m) a( y)] h=(n+m, m)

&| dx dn dm e&i(u+v) x+i(u&v)(n+m)|=
=&1 t [a*(x) a(m)] h=(n+m, m)&

=2d i
= \

1
2? +

2d

| dy dn dm |=
=&1 t [a*(m) a( y)] h=(n+m, m)

_| du dv $(k+u) e&iu(n+m&y)e2iv(=&1r&(n+m+y)�2)

&2d i
= \

1
2? +

2d

| dx dn dm | =
=&1 t [a*(x) a(m)] h=(n+m, m)

_| du dv $(k+u) eiu(n+m&x)e2iv(=&1 r&(n+m+x)�2)

=
&i
= \ 1

2?+
d

| dy dn dm |=
=&1 t [a*(m) a( y)] h=(n+m, m)

_eik(n+m&y)$ \=&1r&
n+m+ y

2 +
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+
i
= \

1
2?+

d

| dx dn dm |=
=&1 t [a*(x) a(m)] h=(n+m, m)

_e&ik(n+m&x)$ \=&1r&
n+m+x

2 +
=

i
= \

1
2? +

d

| dn dy� d' |=
=&1 t _\a* \ y� +

'
2+ a \ y� &

'
2+&

_h= \n+y� +
'
2

, y� +
'
2+ eik(n+')$ \=&1r&

n
2

&y� +
&

i
= \

1
2?+

d

| dn dx� d' |=
=&1 t _\a* \x� +

'
2+ a \x� &

'
2+&

_h= \n+x� &
'
2

, x� &
'
2+ e&ik(n&')$ \=&1r&

'
2

&x� +
=

i
= \

1
2? +

d

| dn d' _eik(n+')|=
=&1 t _a* \=&1r&

n
2

+
'
2+ a \=&1r&

n
2

&
'
2+&

_h= \=&1r+
n+'

2
, =&1r&

n&'
2 +

&
i
= \

1
2?+

d

| dn d' e&ik(n&')|=
=&1 t _a* \=&1r&

n
2

+
'
2+

_a \=&1r&
n
2

&
'
2+& h= \=&1r+

n&'
2

, =&1r&
n+'

2 + &
Now, inserting the definitions of f =(r, k; t) and h(r, n) into the last

expression and expanding both at r, we find that

lim
= a 0

�t f =(r, k; t)

=\ 1
2? +

d

lim
= a 0

i
= | dn d' dv eik'&i'vf = \r&=

n
2

, v; t+
__eiknh \r+=

'
2

, &n+&e&iknh \r&=
'
2

, n+&
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=\ 1
2? +

d

lim
= a 0

i
= | d' dv eik'&i'v f =(r, v; t) | dn(eiknh(r, &n)&e&iknh(r, n))

+\ 1
2?+

d

lim
= a 0 | d' dv eik'&i'v �r f =(r, v; t) | dn ine&iknh(r, n)

+\ 1
2?+

d

lim
= a 0 | d' dv i'eik'&i'vf =(r, v; t) �r | dn e&iknh(r, n)

=&�kE(r, k) �r f (r, k; t)+�rE(r, k) �k f (r, k; t) K

4. REMARKS

1. Proposition 1 can be extended to time dependent quasi-free time
evolutions, U(t, 0)=T[e&i � t

0 dt$ h= (t$)], where h=(t) is a family of self-adjoint
operators such that the integral gives a well-defined self-adjoint operator.
T is the time ordering operation. If h=(x, y; t)=h(=(x+y)�2, y&x; =t) then
the function E(r, k) in Eq. (3.3) is simply replaced by an analogous func-
tion E(r, k; t).

2. The general solution of (3.3) is given by

f (r, k; t)= f (r(&t), k(&t); 0) (4.1)

r(t), k(t) are determined by the classical Hamilton's equations of motion:

�t r=�kE(r, k) (4.2)

�t k=&�rE(r, k) (4.3)

with Hamilton function E(r, k) and r(0)=r, k(0)=k.

3. Analyzing a sum of (properly scaled) quasi-free Hamilton oper-
ators is reduced to the sum of their respective energy spectra; applicable for
example to the case h==(1�2m)( p� +(e�c) A9 (=x))2+eV(=x).

4. The analysis can easily be extended to generators, H, which are
not neccessarily self-adjoint, but where the difference between H and its
adjoint H* is of order =. As an example consider h==&1

22# , generating a
random walk with bias #=(#1 ,..., #d ) on the lattice Zd (with unit vectors ei

in the positive lattice directions):

2# f (x)= :
d

i=1

[(1+#i �2) f (x+ei )+(1&#i �2) f (x&ei )&2 f (x)]
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If #i=#(=) be such that #i (=)�= � ai as = a 0. Then, f (r, k; t) satisfies

�t f (r, k; t)+sin k } [({+a) f (r, k; t)]=0 (4.4)

The velocity term comes from the real part of the dispersion relation
E(r, k)=1&cos k whereas the drift a stems from the imaginary part of E.

5. Notice that the density of particles, \(r, t), is given by

\(r, t)=| dk f (r, k; t)

An example where one can say more about \(r, t) is obtained from taking as
the initial distribution the function f (r, k)=(1�2?) \(r) with k # [&?, ?].
Take Z1 for the lattice case, h=&1

2 2 the lattice Laplacian as one particle
Hamiltonian and the following initial ``diagonal'' states |=:

|=[a*(x) a( y)]=$(x, y) } \(=x)

Then, \(r, t) satisfies the modified Bessel equation

[t2�2
t +t�t&t22] \(r, t)=0 (4.5)

In other words, \~ ( p, t) is the (normal) Bessel function, which for p{0 goes
oscillating to 0 as |t | tends to infinity.

5. QUANTUM HARD CORE BOSONS

In this section we consider a simple model of interacting bosons (cf.
ref. 16). We discuss first an on-site hard core interaction on Z1 (i.e., hard
core radius 0), which has the exclusion effect that at most one boson
occupies a single lattice site. Later we explain extensions to positive core
length.

Let H4(*) be the following bosonic Hamilton operator on an interval
4/Z with point interaction V(x, y)=* } $(x, y) of strength * and free end
boundary conditions,

H4(*)=&1
2 :

x # 4

b*(x)(2b)(x)+* :
x # 4

b*(x)2 b(x)2 (5.1)

Here, b*(x), b( y) denote the Bose field operators on Z. H4(*) acts on the
usual bosonic Fock space, F(4). (Notice, that H4 is not self-adjoint but
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this has no effect for the time-evolution of local observables in the termo-
dynamic limit.) The limit of H4(*) as * goes to infinity displays an interesting
Hamilton operator. This limit is well-defined on states

|�X ) = `
x # X

b*(x) |0) , X/4 (5.2)

which define the Fock space, Fhc(4), of hard core bosons. |0) is the
vacuum state. Let P: F(4) � Fhc(4) be the orthogonal projection onto the
hard core boson states. We introduce the following annihilation (creation)
operators

a(* )(x)=Pb (* )(x) P (5.3)

In particular, they have the following properties:

1. The state space Fhc(4) is invariant under b(x) and therefore
a(x)=b(x) P.

2. a*(x), a( y) satisfy mixed (Anti)Commutation relations:

[a*(x), a( y)]&=0, for x{ y (5.4)

[a*(x), a(x)]+=1 (5.5)

where [ , ]& , [ , ]+ denote the Anti-, commutator, respectively.

3. lim* � � H4(*)=&1
2 �x # 4 a*(x)(2a)(x) on Fhc(4).

The commutation relations are familiar from spin systems. Although
the previous formulation works in any dimension the statistics of the
a*(x)'s can only be efficiently ``repaired'' in one dimension. By applying the
Klein�Jordan�Wigner transformation (cf. ref. 17) we map the hard core
Bose field operators onto Fermi field operators. Let

c4(x)=e&i? � j�x&1 a*( j) a( j) a(x) (5.6)

c*4(x)=a*(x) ei? � j�x&1 a*( j) a( j) (5.7)

where the sum goes over all j # 4 left to x.
This is the usual Klein�Jordan�Wigner transformation. One can make

sense of the formal limit 4 A Z (cf. ref. 10) and the resulting c*(x), c( y)
satisfy the usual Anticommutation relation. Observe that under the above
transformation, formally,

HZ=&1
2 :

x # Z

a*(x)(2a)(x)=&1
2 :

x # Z

c*(x)(2c)(x) (5.8)

904 Maes and Spitzer



is the free fermion Hamilton operator. We know that

n(r, k)= :
' # Z

e2i'kc*(r&') c(r+') (5.9)

are locally conserved quantities for the free force evolution. Rewriting them
in terms of hard core bosons we get

n(r, k)= :
' # Z

e2i'ke&i?N(r&', r+'&1)a*(r&') a(r+') (5.10)

where N(x, y)=�x� j� y a*( j) a( j). This formula is obtained from (5.9) via
substituting Definitions (5.6)�(5.7) with 4 A Z. In this way the hard core
bosons are connected to a free fermion system but the Wigner distribution
for the fermion density does of course not correspond to the Wigner trans-
form of the boson density. Although the time evolution of the a*(x)'s is
quite complicated (and unknown) we are only interested in a special com-
bination appearing in n(r, k). So once the transformation as in Definitions
(5.6)�(5.7) is completed (with 4 A Z), the problem is simply reduced to free
fermions on the lattice (but only as far as this local quantity, n(r, k), is con-
cerned). It is then a simple matter to apply Proposition 1:

Proposition 2. Suppose that f (r, k)=lim= a 0 |=[n(=&1r, k)] exists
(for example if the functions �=

* in the decomposition of |= (see 3.1) are
=-oscillatory (see ref. 11 and bounded). Then, under the dynamics gener-
ated by the Hamilton operator (5.8), f (r, k; t) exists and satisfies the free
force Euler equation

�t f (r, k; t)+sin k } �r f (r, k; t)=0 (5.11)

Remarks. 1. The same analysis works also for bosons with zero core
radius in R1. It results in the free Euler equation (�t+k�r) f (r, k; t)=0.

2. We can contract any (continuous or discrete) configuration of
rods with positive (integral) length bijectively onto a configuration of points
in a contracted configuration space, i.e., onto an above configuration.
Therefore the proposition extends to hard core interactions (with Dirichlet
boundary conditions) of positive length.

3. Imposing Neumann boundary conditions (for example) we expect
a non-linear equation similar to the Euler equation for classical hard rods
proven in ref. 1. This is an open problem.
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6. FLUCTUATIONS OF THE DENSITY

The Euler equation corresponds mathematically to a law of large
numbers. The simplest equation for the density profile is (4.5). Now we
study (non-equilibrium) fluctuations of the particle density for the quasi-
free systems of Section 3. The field of fluctuations, !=(�, A, t), of a local
observable, A, is defined by

!=(�, A, t)==d�2 | dr �(=r)[{r, =&1 t(A)&|=({r, =&1t (A)] (6.1)

Here, � is any test function and |= a family of states as in Section 2.
Further, we denote by {r, t (A) the space and time shift of the observable,
A, by r and t, respectively. We are interested in the density, {r, t (A)=
:t (a*(r) a(r)), in particular in realizing the limit

lim
= a 0

!=(�, A, t)=| dr �(r) !(r, t) (6.2)

We should therefore study the characteristic function, |=(e i*!=(�, A, t)), and
try to reconstruct the limiting dynamics of the fluctuation field. Since we
restrict our attention to quasi-free states (cf. ref. 10) and we always assume
nice clustering properties it is fair to expect Gaussian behavior. The precise
meaning of this in the quantum case (the so called quantum central limit
theorem) can be found in refs. 18 and 19. We are satisfied therefore with
studying the covariance lim= a 0 |=[!=(�, t) !=(,, s)] with !=(,, s) given by
(6.1) for A=a*(0) a(0) and for a class of test functions �, , # D.

Clearly, the dynamics of the fluctuations can only be derived when the
law of large number is already established. Therefore, while the next
proposition does not follow directly from Proposition 1, it is essential to
make sense of fluctuations that one first understands the averaged behavior.
We put ourselves therefore in the same context as for Proposition 1 and we
have that f (r, k; t)=lim= a 0 f =(r, k; t). On the level of the one-particle
dynamics we recall that we denote by r=(t) the rescaled position operator,
see (2.3), and we assume that it converges to an operator r(t) as = a 0, see
refs. 13, 12, and 6. This convergence takes place on a suitable domain D

dense in L2(Rd, dx). Let us write

(eir(t)�)(x, k)=\ 1
2? +

d�2

| dq �� (q) e iqr(x, k; t) (6.3)

where r(x, k; t) is the solution of (4.2). (If the motion is force free then
(eir(t)�)(x, k)=�(x+�kE(k) t).)
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Proposition 3. Under the above conditions on the initial states
and on the Hamilton operator,

lim
= a 0

|=[!=(�, t) !=(,, s)]

=| dx dk(eir(t&s)�)(x, k) ,(x) f (x, k; s)(1\ f (x, k; s)) (6.4)

where +�& concerns Fermi�Bose statistics, respectively.

Proof.

|=[!=(�, t) !=(,, s)]

==d | dr dr$ �(=r) ,(=r$)

_[|=[a*(r, =&1t) a(r, =&1t) a*(r$, =&1s) a(r$, =&1s)]

&|=[a*(r, =&1t) a(r, =&1t)] |=[a*(r$, =&1s) a(r$, =&1s)]]

==d | dr dr$ �(=r) ,(=r$) |=[a*(r, =&1t) a(r$, =&1s)]

_|=[a(r, =&1t) a*(r$, =&1s)]

By changing the order of a and a* in the last expectation we get two
parts. The one including the (anti)commutator is equal to

=d | dr dr$ �(=r) ,(=r$) |=[a*(r, =&1t) a(r$, =&1s)]

_|=([a(r, =&1t), a*(r$, =&1s)]\)

=\ 1
2?+

d�2

=d | dr$ dq �� (q) ,(=r$) | dz dr eiq=re&ih= (t&s) =&1
(r, z)

_eih= (t&s) =&1
(r$, r) |=[a*(z, =&1s) a(r$, =&1s)]

=\ 1
2?+

d�2

=d | dr$ dq �� (q) (=r$) | dz eiqr =(t&s)(r$, z) |=
=&1 s[a*(z) a(r$)]

=\ 1
2?+

d�2

=d | dx d' dq �� (q) , \= \x&
'
2++ eiqr = (t&s)

_\x&
'
2

, x+
'
2+ | =

=&1s _a* \x+
'
2+ a \x&

'
2+&
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=\ 1
2?+

d�2

| dx d' dk dq �� (q) , \x&=
'
2+ e iqr =(t&s)

_\=&1x&
'
2

, =&1x+
'
2+ e&i'k f =(x, k; s)

Now remember our scaling of the matrix elements of h= and take the
limit = a 0 of the last expression:

\ 1
2?+

d�2

| dx dk dq �� (q) ,(x) \| d' eiqr(t&s)(x, ') e&i'k+ f (x, k; s)

=| dx dk(e ir(t&s)�)(x, k) ,(x) f (x, k; s)

For the second part (forgetting the (2?)d�2) we need

lim
= a 0

=d | dq dr$ �� (q) ,(=r$) | dr eiq=r |=
=&1s

_[a*(r, =&1(t&s)) a(r$)] |=
=&1 s[a*(r$) a(r, =&1(t&s))]

=lim
= a 0

=d | dq dr$ �� (q) ,(=r$) | dr dz dz$ eiq=re&ih=&1(t&s)(r, z) |=
=&1s

_[a*(z) a(r$)] eih= (t&s) =&1
(z$, r) |=

=&1s[a*(r$) a(z$)]

=lim
= a 0

=d | dq dr$ �� (q) ,(=r$) | dz dz$ eiq=r(=&1(t&s))(z$, z) | =
=&1s

_[a*(z) a(r$)] |=
=&1s[a*(r$) a(z$)]

=lim
= a 0

=d | dq dx d' �� (q) , \= \x&
'
2++ | dz$ eiqr =(t&s)

_\z$, x+
'
2+ |=

=&1s _a* \x+
'
2+ a \x&

'
2+& |=

=&1 s _a* \x&
'
2+ a(z$)&

=lim
= a 0

=d | dq dx d' �� (q) ,(=x) | dz$ dk eiqr =(t&s)

_\z$, x+
'
2+ e&i'k f =(=x, k; s) | =

=&1s _a* \x&
'
2+ a(z$)&
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=lim
= a 0

=d | dq dy d' d'� dk dk� �� (q) , \= \ y+
'�
2++ eiqr =(t&s)

_\y&
'�
2

, y+
'�
2

+'+ e&i'k&i'� k� f = \= \ y+
'� +'

2 + , k; s+ f =(=y, k� ; s)

=lim
= a 0 | dq dy d' d'� dk dk� �� (q) , \ y+=

'�
2+ eiqr =(t&s)

_\=&1 \ y+=
'
2+&

'+'�
2

, =&1 \ y+=
'
2++

'+'�
2 +

_e&i'k&i'� k� f = \ y+=
'� +'

2 + , k; s+ f =( y, k� ; s)

=lim
= a 0 | dq dy d' d'� dk dk� �� (q) , \ y+=

'�
2+ eiqr(t&s) \ y+=

'
2

,
'+'�

2 +
_e&i'k&i'� k� f = \ y+=

'� +'
2 + , k; s+ f =( y, k� ; s)

=lim
= a 0 | dq dy d& d&� dp dp� �� (q) ,( y) eiqr(t&s)( y, &)

_e&i&p&i&� p� f =( y, p+ p� ; s) f =( y, p& p� ; s)

=(2?)d�2 | dy d&� dp dp� (eir(t&s)�)( y, p) ,( y)

_e&i&� p� f ( y, p+ p� ; s) f ( y, p&p� ; s)

=(2?)d�2 | dy dp(eir(t&s)�)( y, p) ,( y) f 2( y, p; s) K

7. PARTICLES IN A PERIODIC POTENTIAL

So far we have not dealt with the important case of particles moving
in a periodic potential. More precisely, where the system is quasi-free with
one particle Hamiltonian of the form h=&2+U on Rd with periodic
potential U. Recently, Spohn(6) studied their long time behavior. To obtain
the corresponding Euler equations in this case is clearly of interest but
some problems immediately arise.

The first one is related to the identification and the proper interpreta-
tion of the corresponding Wigner distribution function. In other words, by
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what to replace Eqs. (2.7)�(2.9)? We do not know a unique good answer
to that question (but see the discussion in refs. 11�13 and 20. An obvious
generalization of (2.4) goes as follows.

Let �nk be the eigenfunctions of the Hamiltonian H=&2+U, with
periodic potential U, having eigenvalues En(k). Introduce the generalized
Fourier transformation (cf. ref. 21)

/~ (k, n)=|
Rd

dx �nk(x) /(x) (7.1)

We consider now an ensemble (we denote creation and annihilation
operators by a*(x), a( y)) of particles subject to a periodic potential U and
a family of states |= for which the following limit exists (4* is the first
Brillouin zone)

fn(r, k)=lim
= a 0

= |
R d

dv e&irv |=

__a~ * \k+=
v
2

, n+ a~ \k&=
v
2

, n+& , r # Rd, k # 4* (7.2)

and call it the n th band distribution function of the ensemble. a~ (k, n) is to
be understood as (7.1), but now as operators. We recover (2.7) at time
t=0 if in (7.1)�(7.2) we use �nk(x)=(1�2?) e&ikx. Comparing with
(2.8)�(2.9), we have

| dk fn(r, k)=lim
= a 0

|=(a*(=&1r, n) a(=&1r, n)) (7.3)

and

| dr fn(r, k)=lim
= a 0

=|=(a~ *(k, n) a~ (k, n)) (7.4)

Proposition 4. Let :t( } ) be the time evolution of the ensemble
generated by the one particle Hamilton operator H=&2+U on Rd:
H�nk=En(k) �nk . Then,

fn(r, k; t)=lim
= a 0

= |
R d

dv e&irv(|= b :=&1 t)

__a~ * \k+=
v
2

, n+ a~ \k&=
v
2

, n+& r # Rd, k # 4* (7.5)
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exists and

�t fn(r, k; t)+�k En(k) } �r fn(r, k; t)=0 (7.6)

Proof. This is an easy task since :t a~ (k, n)=e&itEn (k) a~ (k, n) and
fn(r, k; t)= fn(r&�k En(k) t, k). K
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